Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Radhey S. Srivastava ${ }^{\text {a }}$ and

 Frank R. Fronczek ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA, and ${ }^{\text {b }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.086$
Data-to-parameter ratio $=35.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

mer-(2,2'-Bipyridine)trichloro(tetramethylene sulfoxide)ruthenium(III) dichloromethane solvate

The title compound, mer- $\left[\mathrm{RuCl}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{OS}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $m e r$ - $\left[\mathrm{RuCl}_{3}(\mathrm{bpy})(\mathrm{TMSO})\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, has the TMSO ligand coordinated through the S atom, with an $\mathrm{Ru}-\mathrm{S}$ distance of 2.3042 (7) \AA. The $\mathrm{Ru}-\mathrm{Cl}$ distances are in the range 2.3324 (7)-2.3649 (8) A, with the longest trans to N . The solvent molecule is ordered.

Comment

Seeking to substitute one of the ligands in the title complex mer-[RuCl_{3} (bpy)(TMSO)] (bpy is $2,2^{\prime}$-bipyridine), (I), with N, N-diethyl-4-nitrosoaniline during the course of our general interest in Ru-halide TMSO complexes, the dichloromethane solvate of the starting material was recovered in crystalline form, as described in the Experimental section. Crystal structure analysis revealed that N, N-diethyl-4-nitrosoaniline did not substitute any of the ligands in the parent compound, presumably for steric reasons. Nevertheless, the results are of interest in view of the small amount of structural data available on $\mathrm{Ru}^{\text {III }}$-TMSO complexes. We have also recently reported the structure of the unsolvated compound (Srivastava \& Fronczek, 2005).

(I)

The TMSO ligand, which may be either S- or O-coordinated, coordinates via the S atom in this case, with the $\mathrm{S}=\mathrm{O}$ bond anti to the central $\mathrm{Ru}-\mathrm{Cl}$ bond, as was observed in the unsolvated compound (Srivastava \& Fronczek, 2005). The bite angle of the bidentate bipyridine, $\mathrm{N} 1-\mathrm{Ru}-\mathrm{N} 2$, is 78.49 (8) ${ }^{\circ}$, typical of bpy coordinated to second or third row transition metals (Constable, 1989; Constable et al., 2003). This also agrees well with the bite angle of 78.16 (9) ${ }^{\circ}$ in the unsolvated structure. The $\mathrm{Ru}-\mathrm{N}$ bond lengths are slightly shorter than the typical $\mathrm{Ru}^{\mathrm{II}}-\mathrm{N}(\mathrm{bpy})$ distance of $2.099 \AA$ (Garas et al., 2000; Wang et al., 1999), as expected from the smaller radius of $\mathrm{Ru}^{\mathrm{III}}$. The $\mathrm{Ru}-\mathrm{N} 1$ distance, trans to Cl , is shorter than $\mathrm{Ru}-$ N 2 , trans to TMSO, by an amount of marginal statistical significance. However, the difference is probably real, as it was

Received 23 September 2005
Accepted 4 November 2005
Online 10 November 2005

Figure 1
The structure of the asymmetric unit of (I), with dispacement ellipsoids at the 50% probability level.
also observed in the unsolvated structure. The short $\mathrm{Ru}-\mathrm{N} 1$ distance is accompanied by a $\mathrm{Ru}-\mathrm{Cl} 1$ distance trans to it, which is somewhat longer than the two $\mathrm{Ru}-\mathrm{Cl}$ distances trans to each other.

The $\mathrm{Ru}-\mathrm{S}$ bond is significantly shorter than the average value of $2.3866 \AA$ found for mer- $\left[\mathrm{RuCl}_{3}(\mathrm{TMSO})_{3}\right]$ (Yapp et al., 1990) and other $\mathrm{Ru}^{\mathrm{III}}-\mathrm{S}$ compounds, trans to TMSO-S in the precursor (Alessio et al., 1990, 1991; Calligaris et al., 1993; Jaswal et al., 1990). The Ru-S bond distances in the present compound do not show any substantial reduction with respect to cis- $\left[\mathrm{RuCl}_{2}(\mathrm{TMSO})_{4}\right]$ (Yapp et al., 1990) and other $\mathrm{Ru}^{\mathrm{II}}-\mathrm{S}$ bond distances (Alessio et al., 1990, 1991; Wang et al., 1999). The $\mathrm{Ru}-\mathrm{S}$ bond length depends upon the oxidation state and on the nature of coordinating trans ligands. The decrease in $\mathrm{Ru}-\mathrm{S}$ bond length from $\mathrm{Ru}^{\mathrm{II}}$ to $\mathrm{Ru}^{\mathrm{III}}$ is partially due to the $\pi-$ back-bonding contribution in the Ru-TMSO bond (Calligaris et al., 1996; Srivastava et al., 2004; Iengo et al., 1999). The $\mathrm{S}-\mathrm{O}$ bond length, however, is shorter than in crystalline TMSO (1.527 Å; Dodge et al., 1972; Jaswal et al., 1990), suggesting a significant $\mathrm{S}-\mathrm{O} \pi$-bonding, resulting from S -tometal electron-density transfer (Davies, 1981; Jaswal et al., 1990).

The solvent molecule is ordered, with statistically indistinguishable $\mathrm{C}-\mathrm{Cl}$ distances.

Experimental

To a homogeneous solution of mer-[$\left.\mathrm{RuCl}_{3}(\mathrm{bpy})(\mathrm{TMSO})\right]$ (0.23 mmol) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(35 \mathrm{ml})$ was added solid N, N-diethyl-4-
nitrosoaniline (0.25 mmol), and the resulting solution was stirred at room temperature for 25 h . The solvent was removed under reduced pressure, triturated with diethyl ether ($4 \times 5 \mathrm{ml}$) and vacuum dried. On recrystallization from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane mixture ($5: 1 \mathrm{v} / \mathrm{v}$), the title solvate was obtained as an orange crystalline solid.

Crystal data

$\left[\mathrm{RuCl}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{OS}\right)\right]$.
$\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=552.69$
Monoclinic, $P 2_{1} / c$
$a=12.804(2) \AA$
$b=10.139(2) \AA$
$c=15.734(2) \AA$
$\beta=96.703(11)^{\circ}$
$V=2028.6(6) \AA^{3}$
$Z=4$

$$
D_{x}=1.810 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8203 reflections
$\theta=2.5-33.7^{\circ}$
$\mu=1.54 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Prism, orange
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler)
ω scans
Absorption correction: multi-scan HKL SCALEPACK
(Otwinowski \& Minor 1997)
$T_{\text {min }}=0.796, T_{\text {max }}=0.857$

> 56386 measured reflections 8048 independent reflections
> 569 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.044$
> $\theta_{\max }=33.7^{\circ}$
> $h=-19 \rightarrow 19$
> $k=-15 \rightarrow 15$
> $l=-24 \rightarrow 23$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0297 P)^{2}\right. \\
& +1.6332 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.01 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Ru} 1-\mathrm{N} 1$	$2.077(2)$	$\mathrm{Ru} 1-\mathrm{Cl} 1$	$2.3649(8)$
$\mathrm{Ru} 1-\mathrm{N} 2$	$2.086(2)$	$\mathrm{S} 1-\mathrm{O} 1$	$1.4781(19)$
$\mathrm{Ru} 1-\mathrm{S} 1$	$2.3042(7)$	$\mathrm{Cl} 4-\mathrm{C} 15$	$1.769(3)$
$\mathrm{Ru} 1-\mathrm{Cl} 3$	$2.3324(7)$	$\mathrm{Cl} 5-\mathrm{C} 15$	$1.768(3)$
$\mathrm{Ru} 1-\mathrm{Cl} 2$	$2.3414(7)$		
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 2$	$78.49(8)$	$\mathrm{Cl} 2-\mathrm{Ru} 1-\mathrm{Cl} 1$	$92.27(2)$
$\mathrm{Cl} 3-\mathrm{Ru} 1-\mathrm{Cl} 1$	$93.49(2)$		
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{S} 1-\mathrm{O} 1$	$-3.66(12)$		

H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}$ bond distances in the range $0.95-0.99 \AA$, and thereafter treated as riding. Displacement parameters were assigned as $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the attached atom. The largest residual difference-map peak is $0.73 \AA$ from the Ru atom and the deepest hole is $0.71 \AA$ from the Ru atom.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents. Professor R. D. Braun of the

metal-organic papers

Department of Chemistry, UL-Lafayette, is acknowledged for careful reading of the manuscript and for helpful discussions.

References

Alessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, W. M. \& Mestroni, G. (1991). Inorg. Chem. 30, 609-618.

Alessio, E., Milani, B., Mestroni, G., Calligaris, M., Faleschini, P. \& Attia, W. M. (1990). Inorg. Chim. Acta, 177, 255-265.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Calligaris, M., Bresciani-Pahor, N. \& Srivastava, R. S. (1993). Acta Cryst. C49, 448-451.
Calligaris, M. \& Carugo, O. (1996). Coord. Chem. Rev. 53, 83-86.
Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1-63.
Constable, E. C., Housecroft, C. E., Neuburger, M., Poleschak, I. \& Zehnder, M. (2003). Polyhedron, 22, 93-108.

Davies, J. A. (1981). Adv. Inorg. Chem. Radiochem. 24, 115-187.
Dodge, R., Johnson, O. \& Selig, W. (1972). Cryst. Struct. Commun. 1, 181.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Garas, A., Craig, D. C., Vagg, R. S. \& Baker, A. T. (2000). J. Coord. Chem. 50, 79-88.
Iengo, E., Mestroni, G., Geremia, S., Calligaris, M. \& Alessio, E. (1999). J. Chem. Soc. Dalton Trans. pp. 3361-3371.
Jaswal, J., Rettig, S. J. \& James, B. R. (1990). Can. J. Chem. 68, 1808-1817.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Srivastava, R. S. \& Fronczek, F. R. (2005). Inorg. Chim. Acta, 358, 854-857.
Srivastava, R. S., Fronczek, F. R. \& Romero, L. M. (2004). Inorg. Chim. Acta, 357, 2410-2414.
Wang, Y., Eichhorn, D. M., Goswami, N., Zhao, Q. \& Rillema, D. P. (1999). J. Chem. Crystallogr. 29, 277-281.
Yapp, D. T. T., Jaswal, J. S., Rettig, S. J., James, B. R. \& Skov, K. A. (1990). Inorg. Chim. Acta, 177, 199-208.

